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The Lagrangian in classical field theory 

E G Peter Rowe 
Department of Mathematics, University of Durham, Durham, UK 

Received 1 August 1983 

Abstract. A consideration of some simple examples of physical systems leads to a formula- 
tion of the most important results of Lagrangian theory in distribution-theoretical terms. 
From the action, defined as the value of the Lagrange distribution on a test function, come 
the equations of motion (in two different forms), the conserved energy tensor distribution, 
and the canonical momentum distribution. 

1. Introduction 

Traditionally (see e.g. Barut 1980), classical field theories are formulated by means 
of an action principle such as 

61 = 0, (1) 

where 

I=[r: 'dfl  d 3 x X  ( 2 )  

The Lagrangian density 3 (henceforth simply the 'Lagrangian') is a function of the 
fields $ in spacetime. The limits on the spatial integration are often left undefined, 
and at the same time one is a little vague about the allowable behaviour of the fields 
at infinity; the trouble is that the conditions required to make the integral exist exclude 
fields one would like to keep, like plane waves. 

The rules for the variations S$ of the fields are imposed rather arbitrarily, but long 
usage has desensitised most people to their strangeness. Indeed, the whole scheme 
has become an almost entirely formal algorithm for obtaining equations of motion 
and, by Noether's theorem, the (stress-)energy(-momentum) tensor T. In formal work 
integrals do not need to exist and functions may be evaluated even where they are 
not defined. The most familiar instance of the latter is in the electrodynamic expression 

j (  x)  . A( x) = d7 U. A( z ) 6 (  x - z )  i 
for a charged point particle, where A includes the self-field. 

Many of these problems can be overcome by recasting the theory in a slightly 
different form. We continue to regard the fields $ as ordinary functions in spacetime. 
In certain circumstances we even accept some singularities in the $; the important 
thing is that they should be sufficient to  specify the physical system. We think of the 
II, as the kinematical variables. 
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The Lagrangian 2 will be regarded as a distribution, that is, a linear functional on 
a space of test functions 4. The functions 4 in spacetime are infinitely differentiable 
and have compact support (vanish outside some finite region). Only the simplest 
properties of distributions, as described, for example, in the first few pages of Gel’fand 
and Shilov (1964), are used in the formulation. When Y is determined by a smooth 
function (also called 2 when it exists) of q9 and its derivatives, the distribution is 
regular, and its value on 4 may be written 

The new form of the action Is Z(4), a functional of both the kinematical variables + 
and the test functions 4. 

Equation (3) is a simple generalisation of ( 2 ) ;  indeed, the earlier form can be 
recovered, when it exists, from (2 ,4)  with a sequence of 4’s. The behaviour of the 
fields 9 at infinity is no longer a problem with (3) since the test functions 4 vanish 
outside a finite region. By generalising from (3) to singular distributions (2, 4),  that 
cannot be written as integrals over functions 42, we have a simple method of extending 
the theory to cover such systems as point particles, and of avoiding problems such as 
undefined function values. 

The formulation of the theory sketched here, in which the kinematical variables 
are ordinary functions, seems to be much simpler and perhaps to have more immediate 
contact with physical measurements than the formulation in Kurlandzki ( 1 9 7 9 ,  in 
which the kinematical fields 9 are also distributions. Even in the present theory there 
is room for fields which are distributions (such as those that satisfy Maxwell’s equations 
with a point particle source), but they appear at a different stage. An example of new 
distribution theory fields is provided below, where canonical momenta are derived 
from the Lagrangian. But, before such extras are introduced, the theory is founded 
on a conceptual base of ordinary functions, the position of a particle or the displacement 
of a string, etc. 

The real objective in developing a dynamical theory from a Lagrangian is to produce, 
at the same time as the equations of motion, a conserved energy tensor. Working 
from (3) we can obtain the connection between the equations of motion and the 
conserved energy tensor by an elegant and transparent invariance argument, which 
need not be interpreted as a minimisation of the action (whose physical content 
remains obscure). We do not attempt to generalise the principle of least action, but 
use instead the invariance of the action when both the kinematical variables CC, and 
the test functions 4 are transformed. 

In the following we consider several physical systems in the new formulation of 
Lagrangian theory: firstly, the massive scalar field, in which all densities are smooth 
and any mathematical operation that could conceivably be legitimate is allowed; 
secondly, the free point particle, which is singular only if one insists on considering it 
as a field. The energy tensors, giving the densities in spacetime, for both the point 
particle and the scalar field can be derived in exactly the same way. These simple 
examples help to define a suitable conceptual framework which is then available for 
more difficult problems when non-formal procedures are needed. 

The theory based on (3) seems the appropriate setting in which to describe in a 
unified way the interaction of a point particle with a field. The point particle is bound 
to create singularities in the field which the formulation ( l) ,  ( 2 )  is ill equipped to deal 
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with. The  last example considered below is the vibrating string with a n  attached point 
mass; it illustrates very well how the distribution theory formulation unites point and  
field. 

2. Massive scalar field 

The Lagrangian for the real, massive scalar field +(x)  is 

p= -‘[a 2 *.a*+m2*21 (4) 

(The gradient vector a$ has covariant components a+/dx”; the metric tensor 7 has 
diagonal components - + + +.) The action on C$ is simply the value of the regular 
distribution 3: 

I ( 4 )  = - d 4 ~ 4 ( x ) ~ [ d + . a $ + m 2 + 2 ] .  ( 5 )  i 
The action (5) is invariant under various transformations, among them the transla- 

(6) 

where a is any real number. In (6), the physical system + is translated by ab, as is 
the test function 4. The  latter transformation is a generalisation of the traditional 
changes of limits in (2).  

Making the replacements (6) in ( 5 )  we get a function of a at the first stage, whose 
derivative is zero in view of the invariance of the action: 

0 = d I / d a  = - 1 d‘x {(a4/aa)$[a$- a+ + m21!J2]+ 4[a+.aa+/aa + m2$a+/aa]}. 

Integrating by parts, and using 

tions, in the direction of a fixed vector b, given by 

4 ( ~ ) + 4 ( ~ ,  a ) = + ( x - a b ) ,  44x1 + $(x, a )  = +(x - a b ) ,  

a4/aa = -b.ad, a+laa = -b. a$, (7)  

we get (putting a = 0 so 4 and (1, again mean what they did originally) 

dI /da l , , ,=O= d4x {b.a4S[a+.a$+m2+’]-a+.a+a+. b++[d*$- m2+]a+/aa}. 

(8) 
i 

The integrated terms vanish because 4 has compact support. 
If the equations of motion a re  satisfied, 

a2$ - m2$ = 0 ,  

then (8) becomes 

0 = - d4x b*{aI!Jd$-- 7 t [a+*a++m2+2]} .a4 .  I 
Equation (9) is the form taken by the distribution theory relation 

0 = (a,T”’”b,, 4 )  - ( T””bV, r3,+4) 
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when the energy tensor T is a regular distribution determined by the dyadic function 

(11) T = at@+ - v:[dJI. a$ + m2$’]. 

Equation (9) is the distribution theory form of the conservation of the energy 
tensor T, but since this distribution is regular and determined by the function in (1 l),  
we can verify the conservation independently from the derivative 

a .  T = (a21L)atCI+(atCI.aatCI)-[atL.aatCI+ m2$ai,h] =0, 

where the equations of motion have been used. 

3. Free point particle 

By contrast with the case of the scalar field, the Lagrangian for the classical point 
particle is not a regular distribution, that is, not of the form (3). The traditional form 
for the action (Rohrlich 1965) is minus an integral of rest mass times proper time elapsed 

I = -  md7,  I 
from which we generalise to the singular distribution with support only on the particle’s 
worldline z ( T )  : 

I ( 4 ) =  - m dT4(Z(T)).  I 
When we transform the integration variable to a dynamically neutral A ,  the action 
takes the form 

d z  d z  I ( 4 ) = -  m d h  --.- ( d h  dh)  4 ( z ( h ) ) ’  

Replacing in (12) z ( h )  by z ( A ,  a )  and 4 ( x )  by 4(x, a ) ,  I becomes a function of 
a, with derivative 

If 4(x,  a )  and z ( h ,  a )  represent translations cub, so that 

4 ( ~ , a ) = 4 ( ~ - a b ) ,  Z ( A , ~ ) = . Z ( A ) + ~ ,  
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then the action is invariant, d l l d a  =0 ,  and d + / a a  +&$.az/aa = O .  If the equations 
of motion are satisfied too, 

we get, for an arbitrary vector b, 

Equation (13) is just the distribution theory expression of the conservation of the 
energy tensor given by the singular distribution 

The informal representation of T is the more familiar 

T = d7 m ~ c 5  ( x - z ( 7)). i 
Further discussion of the energy tensor for a point particle is given, for example, in 
Rowe (1983). 

4. Vibrating string 

We now consider a transversely vibrating string of uniform density p and constant 
tension F, at first without the attached point mass that gives the system its real interest. 
The traditional theory is fully developed in Corben and Stehle (1960). The Lagrangian 
is 

~ = t ( p [ a $ / a t ~ ~ - ~ [ a $ / a x ] ’ )  =t(p+f - ~ + f ) .  (16) 

When the usual wave equation is satisfied, the invariance of the action 

leads quickly to the energy and longitudinal momentum conservation laws in a similar 
way to that used with ( 5 ) :  

If we now attach a point mass m to the string at a fixed coordinate x = X (so it 
can move transversely only), the new action is no longer the value of a regular 
distribution as in (17), but is composed of two pieces, of which one has only point 
support in x: 

I(4)  = I (  dt  h $ f ( X ,  t)4(x, r ) + [  d x 4 b + f  -W;l). (20) 

A second important change is that the displacement + ( x ,  t )  is no longer smooth-$ 
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is continuous but a$/ax has a jump at x = X. So the x integration in (20) must be 
regarded as being over two separate ranges x < X and x > X when we integrate by parts. 

The action (20) is invariant under the time translation 

4(x,  t )  + 4 ( X >  t -  a ) ,  $(x, t )  + $(x, t -  a ) ,  x+x. 
Making the replacement, differentiating, and integrating by parts gives 

In order to extract conservation of energy from (21), two equations of motion 
must be satisfied, one for the continuum motion of the string (coefficient of 4 ( x ,  t ) )  
and one for the motion of the point at x = X (coefficient of &(X, t ) ) :  

P$,, - Fllrxx = 0 9 ( x  f X), (22) 

m*rr = wxl;:, ( x  = X). (23) 

It is an attractive feature of the formulation that these two types of equation appear 
in a unified way. 

From the remainder of (21) we obtain energy conservation; the energy density 
distribution is given by 

(Too,  4) = H dt b " ( X ,  t ) 4 ( x ,  t )  + 1 dx &p9:  +F&I) (24) 

and the energy flux distribution by 

Since 4, is discontinuous, it is important that the conservation law be expressed in 
distribution theory form 

(26) -(TO", a4/at) - (T'O, adlax)  = 0. 
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must be satisfied in order that momentum be conserved in the form 

It is again important, because of the singularity in +, that the conservation law be 
expressed in distribution theory form. The subsidiary condition ensures that the particle 
receives no longitudinal force, a necessary restriction since we have taken X to be fixed. 

A second way of expressing the equations of motion (22) and (23) is by means of 
a distribution theory differential equation for the canonical momentum. 

The components po ,  p1 of the canonical momentum may be defined as follows. 
We replace in the action (20) the derivatives of the kinematical variables +r (or +bx) 
by smooth variations 

+r(x, t )  + +r(x, t )  + ado(x, t )  

(or, respectively, +x + +,+(~4,,). The function 4O should be infinitely differentiable so 
that the product 404 is also a test function if 4 is. The definition of p o  is then 

and, similarly, 

(P’, 4 d )  = a ( %  ~ ) / W , = O  = 1 dt dx(-Wx404) .  

(apo/at+apl/ax, 4) = - ( P O ,  a4/at) - (pl, a4/ax)  = o 
It is easy to check that the equation 

is satisfied, and it is equivalent to both (22) and (23). 
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